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Abstract
We describe a simulation study of the liquid–vapourphase behaviour of a model
polydisperse fluid. Particle interactions are given by a Lennard-Jones potential
in which polydispersity features both in the particle sizes and the amplitude
of their interactions. We address the computational problem of accurately
locating the cloud curve for such a system using Monte Carlo simulations
within the grand canonical ensemble. The strongly nonlinear variation of the
fractional volumes of the phases across the coexistence region precludes naive
extrapolation to determine the cloud point density. Instead we propose an
improved estimator for the cloud point location and use scaling arguments
to predicts its finite-size behaviour. Excellent agreement is found with the
simulation results. Application of the method reveals that the measured cloud
curve is highly sensitive to the presence of large particles, even when they
are extremely rare. This finding is expected to have implications for the
reproducibility of experimentally measured phase diagrams in colloids and
polymers.

1. Introduction

Complex fluids in which the particles are similar in character but not strictly identical are
termed polydisperse. Examples arise throughout soft matter science, notably in colloidal
dispersions, polymer solutions and liquid-crystals. Typically the polydispersity of such systems
is manifest as variation in some physical attribute such as particle size, shape or charge,
which is customarily denoted by a continuous parameter σ . The state of the system is then
specified by a density distribution ρ(σ) measuring the number density of particles of each
σ [1]. The most common experimental situation is one in which the form of the overall or
‘parent’ distribution ρ0(σ ) is fixed by the synthesis of the fluid, and only its scale can vary
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Figure 1. Schematic phase diagram of a polydisperse system in the n0–T plane.

depending on the proportion of the sample volume occupied by solvent. Accordingly one can
write ρ0(σ ) = n0 f 0(σ ), where f 0(σ ) is the normalized parent shape function and n0 = N/V
the overall particle number density. Varying n0 at a given temperature corresponds to scanning
a ‘dilution line’ of the system.

Polydisperse fluids differ from their monodisperse counterparts in a variety of aspects.
Principal among these is the far richer character of their phase behaviour [2]. This richness
is traceable to fractionation effects. At phase coexistence, particles of each σ may partition
themselves unevenly between two (or more) coexisting ‘daughter’ phases as long as—due
to particle conservation—the overall composition ρ0(σ ) of the parent phase is maintained.
This partitioning can have dramatic consequences for phase diagrams. For example, the
conventional liquid–gas binodal of a monodisperse system (which connects the ends of tie-
lines in a density–temperature diagram) splits into a ‘cloud’ and a ‘shadow’ curve, as shown
schematically in figure 1. These give, respectively, the density at which phase coexistence first
occurs and the density of the incipient phase; the curves do not coincide because the shadow
phase in general differs in composition from the parent. Furthermore, as observed in many
experiments (see e.g. [3]) the critical point lies not at the maximum of the cloud or shadow
curve, but at their intersection.

Only recently has experimental work started to elucidate (in a systematic fashion) the
generic consequences of fractionation for phase coexistence properties [4, 5] and many
unsolved issues remain. In this paper, we employ simulation within the grand canonical
ensemble (GCE) to investigate the phase behaviour of a model polydisperse fluid in which
particles interact via a Lennard-Jones potential. The form of the interactions is such that
polydispersity affects both the particles’ diameters σ and the amplitude of interactions. Such
a model yields a phase diagram of the form figure 14. Our results show that fractionation
effects severely complicate the task of accurately determining cloud points for the system. To
address this problem we propose an improved estimator for the location of the cloud point,
and analyse its finite-size scaling properties. The simulation results are found to be in good
agreement with the theoretical predictions.

4 In previous work, we showed that if polydispersity of particles sizes, but not amplitudes, is considered, then the
critical point instead lies very close to the maximum of the cloud curve [13].
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2. Model and computational methods

Our model comprises a fluid of particles interacting via a Lennard-Jones potential:

ui j = εi j
[
(σi j/ri j)

12 − (σi j/ri j)
6
]
, (1)

with εi j = σiσ j , σi j = (σi + σ j )/2 and ri j = |ri − r j |. Although this choice of mixing
rules is non-standard in terms of those commonly employed for simple binary mixtures,
it has the advantage in the present context of considerably simplifying theoretical phase
behaviour calculations made using the moment free energy method, details of which we report
elsewhere [6]. We do not expect the qualitative features of our results to be sensitive to whether
one uses the above mixing rules, or more standard ones such as Lorentz–Bertholet rules [7].

The potential was truncated for ri j > 2.5σi j and no tail corrections were applied. The
diameters σ are drawn from a (parental) Schulz distribution f 0(σ ) ∝ σ z exp[(z + 1)σ/σ̄ ],
with a mean diameter σ̄ which sets our unit length scale. We elect to study the case z = 50,
corresponding to a moderate degree of polydispersity: the standard deviation of particle sizes
is δ ≡ 1/

√
z + 1 ≈ 14% of the mean. The distribution f 0(σ ) was truncated to within the

range 0.5 < σ < σc. The upper cutoff σc serves to prevent the appearance of arbitrarily large
particles in the simulation, but would also be expected in experimental systems because in
the chemical synthesis of colloid particles, time or solute limits restrict the maximum particle
size [8].

The GCE is the ensemble of choice for simulations of polydisperse fluids because it permits
sampling of many different realizations of the instantaneous particle size distribution, while
catering naturally for fractionation effects at phase coexistence. Operationally, we ensure that
the ensemble-averaged density distribution always equals the desired parent distribution ρ0(σ )

by controlling an imposed chemical potential distribution µ(σ). This is achieved using the
non-equilibrium potential refinement (NEPR) scheme [9], which enables the efficient iterative
determination of µ[ρ0(σ ), T ], from a single simulation run, and without the need for an
initial guess of its form. To achieve this, the method continually updates µ(σ) in such a
way as to minimize the deviation of the instantaneous density distribution ρ(σ) from the
target form (i.e. the parent). However, tuning µ(σ) in this manner clearly violates detailed
balance. To correct this, successive iterations reduce the degree of modification applied to
µ(σ), thereby driving the system towards equilibrium and ultimately yielding the equilibrium
form of µ[ρ0(σ ), T ]. Once the requisite form of µ(σ) has been determined for one point on
the dilution line, histogram reweighting permits extrapolation to nearby points [10].

3. Results and finite-size scaling analysis

The principal observable in the GCE simulations is the probability distribution of the fluctuating
number density p(n). We have obtained the form of p(n) for a range of parent densities n0

at T = Tc. Note that here we merely use Tc as a convenient reference point; for our system,
coexistence occurs at Tc over a range of parent densities n0 (cf figure 1), in contrast to the
monodisperse case. Figure 2 shows that in the coexistence region p(n) has two distinct peaks,
which we sample using multicanonical preweighting [11]. The weight under the low and
high density peaks corresponds respectively to the fractional volumes vg and vl that would be
occupied by gas and liquid in the corresponding canonical ensemble. As expected, the peaks
separate and the valley between them deepens as we move away from the critical point by
decreasing n0. This is accompanied by a gradual transfer of weight from the liquid to the gas
peak. Finally the liquid peak disappears, at exponentially small values of vl visible only on a
log scale (figure 2(b)).
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Figure 2. Number density distribution p(n) at T = Tc for parent densities n0 as indicated and for
particle size cutoff σc = 1.4. (a) Linear and (b) log scale. Inset: liquid fractional volume vl versus
n0, for σc = 1.4, 1.6, 1.8.

The observed variation of p(n) poses the question of how to detect the cloud point n0
cl,

defined as the lowest parent density n0 where stable phase coexistence occurs. This is simple
in a monodisperse system because the cloud point also gives the density of the gas phase,
which remains constant throughout the coexistence region. One then simply detects the point
where the gas and liquid peaks have the same weight, i.e. r = vl/vg = 1, and measures the gas
density there. (The criterion r = 1 has the added advantage of leading to only exponentially
small finite-size corrections to the value of µ at coexistence [12].) However, in a polydisperse
system this method fails because fractionation causes the densities and size distributions of
the coexisting phases to vary with n0 [2]. One could attempt to locate the cloud point instead
by extrapolating in n0 to the point where vl → 0 [13]. But in our system the dependence of vl

on n0 is so strongly nonlinear—another effect of fractionation, see the inset of figure 2—that
the resulting cloud point estimates would have very large error bars. Indeed, on a linear plot
of vl versus n0, as shown in figure 2(a), the particle size cutoff effects which our more careful
analysis will reveal (see figure 4 below) would be essentially invisible.

In order to address this problem we analyse the finite-size scaling of p(n). As the linear
system size L grows at fixed n0 and T , the peaks in p(n) will narrow around the densities
of gas and liquid, respectively, and the size distributions averaged over configurations from
each peak will tend to those in the coexisting phases. The ratio r = vl/vg is determined by
the difference in the grand potential. The latter is directly related to the pressure P difference
between the phases i.e. r = exp(βLd�P) for large L, where β = 1/kBT and �P = Pl − Pg.
The criterion for stable coexistence at given fixed n0 is that r must have a finite value as
L → ∞; the pressure difference then has to scale as �P ∼ L−d except in the special case
r = 1 (see above).

For finite L, the liquid phase coexists metastably with the gas in the density region n0 < n0
cl,

where �P = O(1), but here r will be exponentially small. Figure 3 shows this effect clearly:
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Figure 3. Ratio r of liquid to gas fractional volumes on approach to the cloud point at T = Tc for
σc = 1.4. The inset shows the second derivative of ln r w.r.t. n0. The peak position gives an estimate
of the cloud point density. Squares indicate the scaled universal master curve (equation (2)).
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Figure 4. Comparison of cloud curves for σc = 1.4 and 1.6. The critical points for σc = 1.6 (×)
and σc = 1.4 (+) are marked. Also shown is the effect spinodal (limit of metastability) for σc = 1.6
for L = 15σ̄ . The inset displays the variation of the gas cloud point density n0

cl at T = Tc as a
function of σc .

r is independent of L for large enough n0, but the curves separate strongly (note the log
scale) for smaller n0. The cloud point separates the two regimes, permitting the estimate
n0

cl ≈ 0.0825 ± 0.0005 for the parameters shown in the figure.
One can estimate n0

cl even from data for only a single system size L, by using the fact
that �P is O(1) and scales linearly with n0 − n0

cl to leading order near the cloud point, which
implies ln r ∼ Ld(n0 − n0

cl). This applies for n0 < n0
cl, while above n0

cl one has ln r = O(1).
Thus the derivative (∂/∂n0) ln r should drop from an O(Ld) plateau to O(1) around n0 = n0

cl.
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In the second derivative −(∂/∂n0)2 ln r this drop will manifest itself as a peak. A smooth
derivative can be extracted from simulation data using histogram reweighting, and the peak
position then serves as an estimate for n0

cl. This is shown in the inset of figure 3, and gives
n0

cl ≈ 0.0823 from the largest L, consistent with our earlier estimate derived from comparing
data for different L.

The above arguments can be formalized using the results of [12], which pertain to the
monodisperse case but which we have generalized to polydisperse systems [14]. We find that
for large L the second-derivative plot approaches a master curve

−
(

∂

∂ ñ0

)2

ln r = z

(1 + z)3
, ñ0 = z + ln z, (2)

parameterized by z. The scaled parent density is defined here as ñ0 = aLd(n0−n0
cl)+ln(bLdn0

cl)

with a and b system-dependent dimensionless scaling factors. This scaling implies that the
cloud point estimate from the peak position has finite-size corrections of order L−d ln L, while
the peak width and height scale as L−d and L2d , respectively. Our data are consistent with the
width and height scaling and with the dominant L−d dependence of the peak shifts [14]. The
master curve (equation (2)), appropriately scaled, is overlaid onto the largest-L data in figure 3
(inset) and shows excellent agreement.

One observes from figure 2 that the metastable liquid peak in p(n) persists until well
below the cloud point n0

cl. The value of n0 at which it disappears marks the so-called effective
spinodal point [15] at which the liquid is no longer stable to small density fluctuations. The
parent density n0

sp where this occurs should tend to the cloud curve as L grows large [15].
Spinodals in monodisperse systems are conventionally characterized by the density of the
phase that becomes unstable, which is located inside the region where phase separation occurs.
Here we use instead the density n0

sp of the coexisting stable phase, which is outside this region.
This is a more meaningful representation in the polydisperse context since only the stable
(majority) phase has the parental size distribution, while that of the metastable (minority)
phase is determined indirectly via chemical potential equality.

With regard to the overall phase diagram of our system, the cloud curve as calculated using
the methods describe above is presented in figure 4 for two choices of the upper cutoff on the
density distribution, σc = 1.4 and 1.6. One observes a strong dependence of these curves on
the cutoff, even though both values of σc are far in the tail of the parent distribution. This arises
from very strong fractionation effects (figure 5): even though particle sizes around σc are very
rare in the parent, they occur in significant concentration in the shadow liquid. Physically, the
large particles interact more strongly and therefore lead to a significant gain in free energy at
the shorter interparticle separations in the liquid.

It is natural to ask whether the gas phase cloud point density would tend to a non-zero
limit as σc is increased. Indeed the inset of figure 4 shows a further strong decrease of n0

cl by
≈ 25% between σc = 1.6 and 1.8. Theoretical predictions of a moment free energy calculation
for a van der Waals model free energy [13, 14] suggest that this trend continues and that the
cloud point density approaches zero for large σc. Such an unusual effect has previously been
seen in polydisperse hard rods with wide length distributions [16], though only for large σc

and distributions with fatter than exponential tails. Here the decrease of n0
cl is clear even for

σc of the same order as σ̄ , and scaling estimates suggest that cutoff effects occur for any size
distribution with tails heavier than a Gaussian [14].

The physical origin of the decrease of n0
cl to zero is that for large σc the size distribution

in the shadow liquid develops a second peak near σ ≈ σc [14]. We expect this to become
dominant eventually so that as σc increases the shadow will consist of ever more strongly
interacting particles whose sizes are concentrated near the cutoff. It seems reasonable to
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Figure 5. Size distributions f (σ ) in the liquid shadow phase distributions at T = Tc for
σc = 1.4, 1.6, 1.8. Also shown is the parent distribution f 0(σ ).

Figure 6. A snapshot of the quasi-monodisperse crystalline phase that forms from the metastable
liquid near the spinodal for σc = 2.8, T = Tc; see text for details.

postulate that, as a consequence, there should exist some cutoff for which the shadow phase
liquid freezes into a quasi-monodisperse crystal phase. Indeed our simulations provide some
evidence for just such a scenario. Specifically, for the large cutoff value σc = 2.8 and for small
n0 values lying near the spinodal, we observe spontaneous freezing of the metastable liquid
to an fcc crystal structure (see figure 6) [14]. This finding suggests that it is indeed possible
that, for cutoff values larger than those presently accessible in our simulations, the freezing
might occur from a stable liquid phase shadow. Even in the metastable case, however, it could
be possible to observe the crystalline phase in a ‘wetting’ experiment where an attractive wall
stabilizes a finite volume of the dense phase.
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Finally we note from the cloud curves (figure 4) that significant cutoff-dependent shifts
occur only for densities below the critical density. This is consistent with our interpretation
above: for higher densities, the shadow phase is a gas phase of lower density than the parent.
In this, the concentration of large particles is suppressed and that of small particles negligibly
enhanced because of their weak interactions. The shadow size distributions are therefore
concentrated well within the range 0.5 . . . σc (data not shown) so that no cutoff dependence
arises.

4. Conclusions

To summarize, fractionation effects pose distinct problems for simulation studies of the phase
behaviour of polydisperse fluids. We have presented a generally applicable finite-size scaling
method which addresses this matter. Application to a model system reveals that the locus
of the cloud curve is highly sensitive to the imposed value of the particle size cutoff: large
particles have an influence on the phase behaviour which is disproportionate to their overall
concentration. Such effects imply that in experiments on polydisperse fluids (see e.g. [5])
it may be important to monitor and control carefully the tails of the size (or charge, etc)
distribution. Otherwise undetected differences could lead to irreproducibility in the observed
phase behaviour of ostensibly identical samples.
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